0. 요약 이 포스팅은 Fairseq을 이용해 train한 transformer model에서 attention weights를 뽑아내기 위한 노력의 과정을 기술한다. 목차 1. 이슈 Fairseq이 attention weights를 순순히 내놓지 않는다. 선전포고다! 우선 왜 attention weights를 뽑아내야 하는지에 대한 맥락부터 서술하고 시도해본 해결책 + 과정을 섹션 4부터 설명한다. 3. 맥락 Fairseq model이 꽤나 괜찮은 성능을 보였다. (Fairseq입문) (IPA변환기) 이론가로서 나에게 중요한 건 모델의 성능 그자체는 아니다. 촘스키가 말했듯 언어학은 "engineered solution"이 아니라 "real solution"이 필요하다. 답은 나왔다. 엔지니어는 답을 ..